2024年美赛MCM/ICM报名正式开启!
(附23年美赛O奖A篇优秀论文)
刚刚,美赛官方发布最新通知,2024年美赛报名正式开启!
美国大学生数学建模竞赛 (MCM/ICM) 由美国数学及其应用联合会主办, 是唯一的国际性数学建模竞赛, 自1985年以来,美国大学生数学建模竞赛已经 成功举办39届,2023年大赛吸引了来自美国、中国、澳大利亚、加拿大、英国、印度等 多个国家与地区的高校,包括哥伦比亚大学、纽约大学、剑桥大学、帝国理 工学院、哈佛大学、康奈尔大学以及北京大学、清华大学、上海交通大学、 西安交通大学、华南理工大学等全球众多高校在内的20895支队伍参赛,11296个队伍参加MCM,9563个队伍参加ICM,共评出37项特等奖,获奖率约 0.17%。MCM22支、ICM15支,获得得 COMAP Scholarship Award (1万美元奖学 金) 仅有4支,其中3支分别来自天津大学、北京理工大学,东北大学另外1支来自美国杜克大学。
主办单位:美国数学及其应用联合会、美国 comap 公司
1.比赛时间: (北京时间:2024年2月2日,早晨6:00点,星期五) 至 (北京时间:2024年2月6 日,上午9:00,星期二)
2.提交截止日期: (北京时间:2024年2月6日,上午10:00,星期二)
3.比赛结果:结果将于2024年5月31 日或之前发布。
MCM
·特等奖(Outstanding Winner:<1%)
·提名奖(Finalist:2%)
·一等奖(Meritorious:7%)
·二等奖(Honourable Metion:24%)
·成功参与奖(Successful Participant:64%)
·不成功参赛(UnsuccessfulParticipant:<1%)
ICM
·特等奖(Outstanding Winner:<1%)
·提名奖(Finalist:1%)
·一等奖(Meritorious:7%)
·二等奖(Honourable Metion:18%)
·成功参与奖(Successful Participant:69%)
扫码立即报名
或复制报名官方网址:http://www.nmmcm.org.cn/match_detail/31
各参赛队伍在报名主页:http://www.nmmcm.org.cn/match_detail/31 上自行注册报名,缴费成功后,报名费不予退还。
说明:美赛证书每人一份,证书上队员名字排名不分先后,各参赛队员具有同等的贡献率。
2024年美赛MCM/ICM报名正式开启!
(附23年美赛O奖A篇优秀论文)
1.3 Existing Literature Prior to developing our customized model, we researched and analyzed several existing models.Below are two important examples. First, we examined the classic Lotka-Volterra Model as a basis to consider competition between plant species and impacts on growth [ 6] . An abstracted version of the predator-prey equations are: dx = ax-Bxy dydry-oy where a and are the growth rates of each of the prey predator species respectively, while B and o represent the competitive interaction between the two species. Although the Lotka-Volterra Model provided a method to factor in competition, we believed its specificity towards a predator-prey relationship made it difficult to accurately model plant interactions since those interactions could potentially also be mutually beneficial. At the same time, perhaps the most important issue regarding the model for our task was the assumption of a constant growth rate. It does not take into consideration the relationship that growth rate and water scarcity. To address this resource utilization aspect of plant modeling we also considered Monod’s equation for modeling microbial growth rate [ 71 μ=μaxKs+S where , the growth rate, is determined by the product of the maximum growth rate and a fraction where S represents the concentration of a limiting substrate, or resource and K is a constant. These two models provided a fundamental starting point for our work but were ultimately insufficient for the problem at hand. In particular, we hoped to account for the following factors that were not considered in these systems: I. Multiple species interaction 2. Storage of groundwater 3. The spatial dimensions of the community, which infiuences plant and water dispersal 4. Different types of droughts 5. Resilience and resistance of plants 6. Exteral factors like pollution and habitat reduction .
2024年美赛MCM/ICM报名正式开启!
(附历年美赛O奖优秀论文)